Nematodes, Bacteria, and Flies: A Tripartite Model for Nematode Parasitism

نویسندگان

  • Elissa A. Hallem
  • Michelle Rengarajan
  • Todd A. Ciche
  • Paul W. Sternberg
چکیده

More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences.

Nematodes and bacteria are major components of the soil ecosystem. Many nematodes use bacteria for food, whereas others evolved specialized bacterial interactions ranging from mutualism to parasitism. Little is known about the biological mechanisms by which nematode-bacterial interactions are achieved, largely because in the laboratory nematodes are often cultured under artificial conditions. W...

متن کامل

Root-knot and cyst nematode parasitism genes: the molecular basis of plant parasitism.

Roundworms of the Nematoda comprise one of the largest animal phyla on Earth (1). They inhabit diverse terrestrial and aquatic niches through adaptations of a spectrum of trophic groups, including parasites that threaten human, animal and crop plant health. The most well-known nematode, Caenorhabditis elegans, is a native soil-dwelling microbivore that has emerged as a premier model for animal ...

متن کامل

The soybean cyst nematode, Heterodera glycines: a genetic model system for the study of plant-parasitic nematodes.

Despite advances in understanding plant responses to nematode infection, little information exists regarding parasitic mechanisms. Recently, it has become possible to perform genetic analysis of soybean cyst nematode. Integration of classic and reverse genetics and genomic approaches for the parasite, with host genetics and genomics will expand our knowledge of nematode parasitism.

متن کامل

Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success

Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. Wi...

متن کامل

A Lover and a Fighter: The Genome Sequence of an Entomopathogenic Nematode Heterorhabditis bacteriophora

Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproductio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007